酶的应用教案5篇

时间:
betray
分享
下载本文

教案的制定应关注学生的心理健康,设计活动以减轻学习压力,增强积极情绪,制定教案有助于教师在教学中保持一致性与连贯性,以下是瑞文巴巴网小编精心为您推荐的酶的应用教案5篇,供大家参考。

酶的应用教案5篇

酶的应用教案篇1

掌握勾股定理,能用勾股定理解决某些简单的实际问题。

教学难点:熟练勾股定理,并利用它们的特征解决问题。

(一)合作交流: 1、如图①在rt△abc中,∠c=90o,由勾股定理,

得c2=_____________, c=__________

2、在rt△abc中,∠c=90o

① 若a=1,b=2,则c2=_________=_________=_____∴c=_________

② 若a=1,c=2,则b2=___________=________=______∴b=_________

③ 若c=10,b=6, 则a2=___________=________=______∴a=_________

(二)综合应用:

例1:(1)在长方形abcd中ab、bc、ac大小关系?

(2)一个门框的尺寸如图1所示。

①若有一块长3米,宽0.8米的薄木板,问怎样从门框通过?

②若薄木板长3米,宽2.2米呢?为什么?

解:(1)___________________

( 2)答: ①:__________

②:_________

在rt△abc中, 由勾股定理,得ac2=ab2+bc2=________=___

因为ac______木板的宽,所以木板_________从门框内通过。

(三)巩固提高

1、已知要从电杆离地面5米处向地面拉一条长7米的电缆,

求地面电缆固定点a到电线杆底部b的距离。

解:由题意得,在rt△abc中: =5米, =7米

根据勾股定理,得ab2=

∴ab=

2、如图,一个圆锥的高ao=2.4cm,底面半径ob=0.7cm,

求ab的长。

解:

3、如图,为了求出位于湖两岸的两点a、 b之间的距离,一个观测者在点c设桩,使三角形abc恰好为直角三角形.通过测量,得到ac长160米,bc长128米.问从点a穿过湖到点b有多远?

解:由题意得:在 中,

根据勾股定理得:

∴ab=

∴从点a穿过湖到点b有

4、求下列阴影部分的面积:

(1) 阴影部分是正方形; (2) 阴影部分是长方形; (3) 阴影部分是半圆.

正方形的边长=

正方形的面积=________ ______

(2)

长方形的长=

长方形的面积为________________

(3)

圆的半径=

半圆的面积为__________________

5、一旗杆离地面6米处折断,旗杆顶部落在离旗杆8米处,旗杆折断之前有多少米?

(提示:折断前的长度应该是ab+bc的长)

解:

6、如图所示,求矩形零件上两孔中心a和b的距离。

(精确到0.1mm)(分析:求两孔中心a和b的距离即

求线段____的长度)

解: 如图:ac=

bc=

∵rt△abc中,∠c=90o,

由勾股定理,得

∴ab2=_________=

∴ab=

答:

7、在△abc中,∠c=900,ab=10。

(1)若∠b=300,求bc、ac。

(2)若∠a=450,求bc、ac。

8、如图,一个3米长的梯子ab,斜着靠在竖直的墙ao上,这时ao的距离为2.5米。

①求梯子的底端b距墙角o多少米?

②如果梯子的顶端a沿墙角下滑0.5米至c,请同学们:

猜一猜,底端也将滑动0.5米吗?

算一算,底端滑动的'距离近似值是多少? (结果保留两位小数)

9、一艘轮船以16海里/时的速度离开港口a向东南方向航行。另一艘轮船在同时同地以12海里/时的速度向西南方向航行,它们离开港口一个半小时后相距多远?(自已画图,标字母,求解)。

(四)课堂小结

这节课我们学习了什么内容?有什么收获?你还有什么疑问吗?

(五)作业

(六)课堂反思

酶的应用教案篇2

第一课时

一、教学目标

1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。

2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。

3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。

二、重点·难点·疑点及解决办法

1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。

2.教学难点:根据数与数字关系找等量关系。

3.教学疑点:学生对列一元二次方程解应用问题中检验步骤的理解。

4.解决办法:列方程解应用题,就是先把实际问题抽象为数学问题,然后由数学问题的解决而获得对实际问题的解决。列方程解应用题,最重要的是审题,审题是列方程的基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。

三、教学过程

1.复习提问

(1)列方程解应用问题的步骤?

①审题,②设未知数,③列方程,④解方程,⑤答。

(2)两个连续奇数的表示方法是,(n表示整数)

2.例题讲解

例1 两个连续奇数的积是323,求这两个数。

分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法)a.设较小的.奇数为x,则另一奇数为,b.设较小的奇数为,则另一奇数为;c.设较小的奇数为,则另一个奇数。

以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。

解法(一) 设较小奇数为x,另一个为,

据题意,得

整理后,得

解这个方程,得。

由得,由得,

答:这两个奇数是17,19或者-19,-17。

解法(二) 设较小的奇数为,则较大的奇数为。

据题意,得

整理后,得

解这个方程,得。

当时,

当时,。

答:两个奇数分别为17,19;或者-19,-17。

解法(三) 设较小的奇数为,则另一个奇数为。

据题意,得

整理后,得

解得,,或。

当时,。

当时,。

答:两个奇数分别为17,19;-19,-17。

引导学生观察、比较、分析解决下面三个问题:

1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?

2.解题中的x出现了负值,为什么不舍去?

答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数。

3.选出三种方法中最简单的一种。

练习1.两个连续整数的积是210,求这两个数。

2.三个连续奇数的和是321,求这三个数。

3.已知两个数的和是12,积为23,求这两个数。

学生板书,练习,回答,评价,深刻体会方程的思想方法。

例2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数。

分析:数与数字的关系是:

两位数十位数字个位数字。

三位数百位数字十位数字个位数字。

解:设个位数字为x,则十位数字为,这个两位数是。

据题意,得,

整理,得,

解这个方程,得(不合题意,舍去)

当时,

答:这个两位数是24。

以上分析,解答,教师引导,板书,学生回答,体会,评价。

注意:在求得解之后,要进行实际题意的检验。

练习1 有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数。(35)

教师引导,启发,学生笔答,板书,评价,体会。

四、布置作业

教材p42a 1、2

补充:一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数。

五、板书设计

探究活动

将进货单价为40元的商品按50元售出时,能卖500个,已知该商品每涨价1元时,其销售量就减少10个,为了赚8000元利润,售价应定为多少,这时应进货为多少个?

参考答案:

精析:此题属于经营问题.设商品单价为(50+)元,则每个商品得利润元,因每涨1元,其销售量会减少10个,则每个涨价元,其销售量会减少10个,故销售量为(500)个,为赚得8000元利润,则应有(500).故有=8000

当时,50+=60,500=400

当时,50+=80,500=200

所以,要想赚8000元,若售价为60元,则进货量应为400个,若售价为80元,则进货量应为200个.

酶的应用教案篇3

教学目标:

1、理解并掌握连除应用题的数量关系。

2、通过举实际例子亲身体验并感受连除应用题的数量关系,并在亲身体验中通过合作、交流得出连除应用题的两种计算方法。

3、能用两种方法正确解答应用题。

4、通过加强与生活的联系,感受到生活来源于生活,又用于生活。

教学重点:掌握数量关系,并能用两种方法正确列式计算。

教学难点:理解数量关系并能说出想法。

教学关键:通过举实际例子体验数量关系。

教学过程:

一、 引入

1、谈话:

(1)(拿起粉笔)工厂里生产出一支一支的粉笔,卖给我们的学校是不是一支一支拿过来呢?(得出先装成盒再装成箱)

(2)生举例子:生活中这样的例子还有很多很多,你们还能举吗?(举出不同情况的例子)

2、动手操作、加深印象:把12支铅笔平均分成2份,每份是几?把每份6支平均分成3份,每份是几?

小结:刚才进行了几次平均分?

3、提供材料:假设一个工厂生产了4800支粉笔、每60支装

一盒、每20盒装一箱、装了4箱。

(1)观察从这些材料中你知道了什么?

(2)选择其中的一些材料,提出问题编出应用题。

4、呈现学生编的应用题;

(1)一步计算的、两步计算的、

(2)解决一步计算的与两步计算的连乘的应用题

(个别学生说说自己的理由)

如:一个工厂生产了4800支粉笔,平均装了4箱,每20盒装一箱,平均每盒装多少支?(可能也有不同的:如问题是装了几箱。)

二、 展开

1、 独立思考:指着两步计算连除的应用题这样的又该怎么解答呢?看谁的方法多。

2、 小组交流:把你的想法说给你们小组的小朋友听;认真别人的不同的法想;小组长作好记录准备汇报。

3、 全班交流:刚才每小组的小朋友都非常积极地说自己的想法,且也非常认真地听别的小朋友的不同的想法,每小组肯定都有很好的、很精彩的解法,把你们的想法展示出来吧。

(1)平均每箱装了多少支?

4800÷4=1200(支)

(2)平均每盒装了多少支?

1200÷20=60(支)

综合算式:4800÷4÷20=60(支)

这里学生说这种想法时出示线段图加深理解。

或:(1)一共装了多少盒?

20×4=80(盒)

(2)平均每盒放多少支?

4800÷80=60(支)

综合算式:4800÷(20×4)=60(支)

生选择一种说说想法、同桌互说想法。

小结:刚才做的题目有什么特点:进行了两次平均分。

4、试一试:

学校图书馆买来864本新书,平均放在6个书架上,每上书架有4层。平均每层放多少本?

(1)独立做(用两种方法解答)

(2)交流说说解题思路(个别说、同桌互说)

5、比较、概括:刚才做的这道题目与开始时做的那道连乘应用题有什么相同与不同之处?

同时出示课题:连除应用题

三、 练习

1、针对练:用两种方法解答。

(1)电池厂生产了4800节电池,每12节装一盒,每8盒装一箱。一共可以装多少箱?

(2)三年级有2个班,每班有42人,一共栽树336棵。平均每人栽树多少棵?

独立做、个别说想法。

2、比较练:

(1)商场运来3箱衬衣,每箱有24件,每件95元。一共卖了多少元?

(2)商场运来3箱衬衣,每箱有24件,一共卖了6840元。每件衬衣多少元?

独立做、个别说想法、比较两题有什么相同与不同之处?

3、提高练:先补充条件,再列式计算。

食堂运来2车大米,每车有15袋, 平均每袋大米重多少千克?

独立做、汇报。

四、 小结:你有什么新收获?

五、 作业:课堂作业第45页。

板书:连除应用题

一个工厂生产了4800支粉笔,平均装了4箱,每20盒装一箱,平均每盒装多少支?

平均每箱装了多少支?

4800÷4=1200(支)

每盒装了多少支?

1200÷20=60(支)

综合算式:4800÷4÷20=60(支)

一共装了多少盒?

20×4=80(盒)

平均每盒放多少支?

4800÷80=60(支)

综合算式:4800÷(20×4)=60(支)

答:每盒60支。

酶的应用教案篇4

教学目标:

1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题

2、能根据实际问题中的条件确定反比例函数的解析式。

3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。

教学重点、难点:

重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题

难点:根据实际问题中的条件确定反比例函数的解析式

教学过程:

一、情景创设:

为了预防“非典”,某学校对教室采用药熏消毒法进行消毒, 已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物8min燃毕,此时室内空气中每立方米的含药量为6mg,请根据题中所提供的信息,解答下列问题:

(1)药物燃烧时,y关于x 的函数关系式为: ________, 自变量x 的取值范围是:_______,药物燃烧后y关于x的函数关系式为_______.

(2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;

(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?

二、新授:

例1、小明将一篇24000字的社会调查报告录入电脑,打印成文。

(1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务?

(2)录入文字的速度v(字/min)与完成录入的时间t(min)有怎样的函数关系?

(3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?

例2某自来水公司计划新建一个容积为 的长方形蓄水池。

(1)蓄水池的底部s 与其深度 有怎样的函数关系?

(2)如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?

(3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100m和60m,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)

三、课堂练习

1、一定质量的氧气,它的密度 (kg/m3)是它的`体积v( m3) 的反比例函数, 当v=10m3时,=1.43kg/m3. (1)求与v的函数关系式;(2)求当v=2m3时求氧气的密度.

2、某地上年度电价为0.8元度,年用电量为1亿度.本年度计划将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)(元)成反比例,当x=0.65时,y=-0.8.

(1)求y与x之间的函数关系式;

(2)若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%? [收益=(实际电价-成本价)(用电量)]

3、如图,矩形abcd中,ab=6,ad=8,点p在bc边上移动(不与点b、c重合),设pa=x,点d到pa的距离de=y.求y与x之间的函数关系式及自变量x的取值范围.

四、小结

五、作业

30.31、2、3

酶的应用教案篇5

教学内容:

人教版54页例2

教学目标:

1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;

2、培养学生应用所学数学知识解决实际问题的能力;使学生真正成为课堂的主人;

3、通过实例使学生感受到数学于生活,生活离不开数学。

教学重点:

1、正确理解按比例分配的意义。

2、掌握按比例分配应用题的特征和解题方法。

教学难点:

能正确、熟练地解答按比例分配的实际问题。

教学过程:

一、课前组织复习旧知

同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某兴趣小组男生和女生的人数比是5:4,从这组比中,你能推断出什么信息呢?”(出示题目)

学生自由发言,预设推断如下:

1、全班人数是9份,男生占其中的5份,女生占其中的4份。

2、以全班为单位“1”,男生是全班的,女生是全班的。

3、以男生为单位“1”,女生是男生的,全班是男生的。

4、以女生为单位“1”,男生是女生的,全班是女生的。

5、女生比男生少(或20%)。

6、男生比女生多(或25%)。

追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?(请3个学生说说,把握总人数比是5:4就可以了。)

二、探索方法,建立模型

1.理解题意

(1)什么是稀释液?怎样配置的?

(2)什么是按比例分配?

2.自主探究,合作学习

自学数学书p49例题2,思考:

(1)你从例题2中得哪些信息?

(2) 1:4表示什么?你从中得到哪些信息?

(3)你能用画图的方法给同位讲解吗?

(4)方法一先求什么?再求什么?方法二先求什么?再求什么的?

3.小组展讲

小结:方法一把各部分数的比看作份数关系,先求每一份,然后再求各部分的量;方法二把各部分的比转化成分别占总数的几分之几,根据分数乘法的意义,直接求总数的几分之几是多少。

三、巩固练习

1.一个三角形三条边的长度比是3∶5∶4.这个三角形的周长是36厘米,三条边的长度分别是多少厘米?

2.填空

3.一个长方形的周长是28c,长与宽的比是5:2,长与宽各是多少c?

4.一个班,男生比女生人数多10人,男生与女生人数的比是3:2,全班有多少人?

酶的应用教案5篇相关文章:

幼儿园教案教案推荐5篇

手点画教案小班教案5篇

氓教案优秀教案精选5篇

教案小班安全教案推荐5篇

小班教案比大小教案优秀5篇

手指教案教案参考5篇

幼儿园教案教案通用5篇

植树节教案中班教案5篇

幼儿园春教案优秀教案参考5篇

幼儿园春教案优秀教案最新5篇

酶的应用教案5篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
79680