六年级正比例教案7篇

时间:
Brave
分享
下载本文

趣味盎然的教案内容能够让学生在学习过程中享受到轻松愉快的氛围,教案合理安排教学资源和教学环境,为学生提供良好的学习条件和氛围,以下是瑞文巴巴网小编精心为您推荐的六年级正比例教案7篇,供大家参考。

六年级正比例教案7篇

六年级正比例教案篇1

教学内容:

成正比例的量

教学目标:

1、使学生理解正比例的意义,会正确判断成正比例的量。

2、使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。

教学重点:

正比例的意义。

教学难点:

正确判断两个量是否成正比例的关系。

教具准备:

媒体课件

教学过程:

一、揭示课题

1、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你能举出一些这样的例子吗?

在教师的指导下,学生会举出一些简单的例子,如

(1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。

(2)送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。

(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。

(4)排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。

2、这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量

二、探索新知

1、教学例1

(1)出示例题情境图。

问:你看到了什么?生

杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。

(2)出示表格。

高度/㎝ 2 4 6 8 10 12

体积/㎝3 50 100 150 200 250 300

底面积/㎝2

问:你有什么发现?

学生不难发现:杯子的底面积不变,是25㎝2。

板书

教师:体积与高度的比值一定。

(2)说明正比例的意义。

①在这一基础上,教师明确说明正比例的意义。

因为杯子的.底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

②学生读一读,说一说你是怎么理解正比例关系的。

要求学生把握三个要素

第一,两种相关联的量;

第二,其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

第三,两个量的比值一定。

(三要素可再省略:1.相关联;2.同时变化;3.比值一定)

(3)用字母表示。

如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用正的式子表示:y/x=k(一定)

(4)想一想

师:生活中还有哪些成正比例的量?

学生举例说明。如

长方形的宽一定,面积和长成正比例。

每袋牛奶质量一定,牛奶袋数和总质量成正比例。

衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

地砖的面积一定,教室地板面积和地砖块数成正比例。

2、教学例2。

(1)出示表格(见书)

(2)依据下表中的数据描点。(见书)

(3)从图中你发现了什么?

这些点都在同一条直线上。

(4)看图回答问题。

①如果杯中水的高度是7㎝,那么水的体积是多少?

生:175㎝3。

②体积是225㎝3的水,杯里水面高度是多少?

生:9㎝。

③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?

生:水的体积是350㎝3,相对应的点一定在这条直线上。

(5)你还能提出什么问题?有什么体会?

通过交流使学生了解成正比例量的图像特征。

3、做一做。

过程要求

(1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?

比值表示每小时行驶多少千米。(速度)

(2)表中的路程和时间成正比例吗?为什么?

成正比例。理由

①路程随着时间的变化而变化;

②时间增加,路程也增加,时间减少,路程也随着减少;

③种程和时间的比值(速度)一定。

(3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。

(4)行驶120km大约要用多少时间?指导学生估算的方法

(5)你还能提出什么问题?

4、课堂小结

说一说成正比例关系的量的变化特征。

学生回答成正比例的理由时,语言表述不清楚,要注意引导学生按照正比例中的三要素来回答

三、巩固练习

完成课文练习七第1~5题。

练习补充,可以从中挑选有关正比例的练习,其它可等学习反比例后再做。

板书设计:

成正比例的量

相关联;同时变化;比值一定

x×y=k(定值)

教学反思:

反思的第(1)个问题是:什么样的两种量叫做相关联的量,资料上解释:一种量变化,另一种量也随着变化,那么一个人的身高和体重算不算两种相关联的量?第(2)个问题是:类型过于多,到底怎么帮助学生整理方法。一节课的学习孩子们基本上理解了正比例的意义,但是对于判断两个量是否成正比例孩子们还是感到困难,在这个环节的教学上我处理的不够好。我要再去请教其他老师,吃透这个知识。帮助孩子们更好的理解。

六年级正比例教案篇2

教学要求:

1、使学生认识正比例关系的意义,理解,掌握成正比例量的变化规律及其特征,能依据正比例的意义间断两种相关联的量成不成正比例关系。

2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

教学过程:

一、复习铺垫

1、说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2、引入新课

我们已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系,这节课开始,我们就来研究和认识这种变化规律。今天,我们先认识正比例关系的意义。

二、教学新课

1、教学例

出示例让学生计算,在课本上填表。

让学生观察表里两种量变化的数据,思考。

(1)表里有哪两种数量,这两种数量是怎样变化的?

(2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?

引导学生进行讨论。

提问:这里比值50是什么数量?(谁能说出它的数量关系式?)

想一想,这个式子表示的是什么意思?

2、教学例2

出示例2和想一想

要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。

学生观察思考后,指名回答。然后再提问,这两种数量的变化规律是什么?你是怎样发现的?

比值1.6是什么数量,你能用数量关系式表示出来吗?

谁来说说这个式子表示的意思?

3、概括正比例的意义。

像例1、例2里这样的两种相关联的量是怎样的关系呢?请同学样看课本第40页最后一节。

4、具体认识

(1)提问:例1里有哪两种相关联的量?这两种量成正比例关系吗?为什么?

例2里的两种量是不是成正比例的量?为什么?

(2)做练习八第1题。

5、教学例3

出示例3,让学生思考

提问:怎样判断是不是成正比例?

请同学们看一看例3,书上怎样判断的,我们说得对不对。

强调:关键是列出关系式,看是不是比值一定。

三、巩固练习

1、做练一练第1题。

指名学生口答,说明理由。

2、做练一练第2题。

指名口答,并要求说明理由。

3、做练习八第2题(小黑板)

让学生把成正比例关系的先勾出来。

指名口答,选择几题让学生说一说怎样想的?

四、课堂小结

这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示y和x这两种相关的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?

五、家庭作业。

六年级正比例教案篇3

教学目标:

1、知道与正比例函数的意义.

2、能写出实际问题中正比例关系与关系的解析式.

3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.

4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力.

教学重点:

对于与正比例函数概念的理解.

教学难点:

根据具体条件求与正比例函数的解析式.

教学方法:

结构教学法、以学生“再创造”为主的教学方法

教学过程:

1、复习旧课

前面我们学习了函数的.相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)

2、引入新课

就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是.

顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了.教师将学生的正确的例子写在黑板上)

这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果.)不难看出函数都是用自变量的一次式表示的,可以写成( )的形式.

一般地,如果( 是常数, )(括号内用红字强调)那么y叫做x的.特别地,当b=0时, 就成为( 是常数, )

3、例题讲解

例1、某油管因地震破裂,导致每分钟漏出原油30公升

(1如果x 分钟共漏出y 公升,写出y与x之间的函数关系式

(2)破裂3.5小時后,共漏出原油多少公升

六年级正比例教案篇4

教学目标:

1、掌握用正比例的方法解答相关应用题;

2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解;

3、培养学生分析问题、解决问题的能力;

4、发展学生综合运用知识解决简单实际问题的能力。

教学重点:掌握用正比例的方法解答应用题

教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。

教学过程:

一、复习:出示课件

二、谈话导入:

1、在上新课之前,先考考大家我们的楼房有多么高?

2、怎样测量它大概的高度呢?

刚才同学们想出了很多的方法去测量大概高度。今天我们学习一种新的方法──正比例应用题,学完后,我们试着用这种方法去计算楼房的大概高度。看谁学得最棒。

三、新课教学:

先来研究这样一个问题。

1、出示例1课件

一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

2、分析解答应用题

(1) 请一位同学读一读题目

(2) 这道题要求什么?已知什么条件?

(3) 能不能用以前学过的方法解答?

(4) 让学生自己解答,边订正边板书:

140÷2×5

=70×5

=350(千米)

答:________________。

3、激励引新

这两种方法都合理,还可以有什么方法解答呢?

学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?

四、探讨新知

1、提出问题

师:请同学们结合课本上的例题,讨论以下问题。

(1) 题目中相关联的两种量是________和________。

(2) ________一定,_________和_________成_______比例关系。

(3) ______行驶的_____ 和 _____的 ________相等。

2、学生自学例题后小组讨论。

3、组间交流:小组代表把讨论结果在班内交流

4、学生尝试解答后评价(指名学生板演)

5、怎样检验?把检验过程写出来。

6、概括总结

(1) 用比例解答应用题与用算术方法解答应用题教师这道题的解法,如果题目中没有要求的,我们采取任何一种方法都可以,但如果题目要求用比例解的,就一定要用

比例的方法解。

(2) 明确解题步骤。(板)

用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。

1.分析判断

2.找出列比例式所需的相等关系

3.设未知数列等式

4.求解

5.检验写答语

五、练习提高

1、 变式练习,出示课件

(1)例题改编

① 如果把这道题的第三个和问题改成:“已知公路长350千米,需要行驶多少小时?”该怎样解答?

② 让学生解答改编后的应用题,集体订正。

③ 小结 :比较一下改编后的题和例1有什么联系和区别?

例1的条件和问题以后,题中成正比例的关系仍没变,解答的.方法出没有改变,只是要设需要行驶的小时数为x,列出的等式是:

140/2=350/x

(2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?

2、基本练习,出示课件

3、实践运用

(1)汇报数据:刚才我们上课时提到怎样测量和计算楼房的大概高度,课前我请几位同学去测得一些数据。现在请这些同学跟我们汇报一下。

(2)能用这些数据编一道正比例应用题吗?

(3)小组合作编题

六、总结

今天我们学习的是如何用正比例的方法解答以前学过的应用题。解答的步骤怎样的呢?

七、课后反思

1、还有部分学生不理解正比例的意义

2、不会判断是不是成正比例的关系

3、列出的比例式不是正比例的形式

六年级正比例教案篇5

教学内容

教科书第54页例3,练习十二5,6,7题。

教学目标

1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。

2.通过运用正比例解决实际问题的活动,让学生体验数学的应用价值,培养学生解决问题的能力。

3.渗透函数思想,使学生受到辩证唯物主义观念的启蒙教育。

教学重、难点

运用正比例知识解决简单的实际问题。

教学准备

教具:多媒体课件。

学具:作业本,数学书。

教学过程

一、复习引入

1.判断下面各题中的两种量是不是成正比例?为什么?

(1)飞机飞行的速度一定,飞行的时间和航程。

(2)梯形的上底和下底不变,梯形的面积和高。

(3)一个加数一定,和与另一个加数。

(4)如果y=3x,y和x。

2.揭示课题

教师:我们已经学过正比例的一些知识,应用这些知识可以解决生活中的实际问题。这节课,我们就来学习"正比例的应用"。

二、合作交流,探索新知

1.用课件出示例3

教师:这幅图告诉我们一个什么事情?需要解决什么问题?

教师:先独立思考,再小组合作交流,看能想出哪些方法解决这个问题。

2.全班交流解答方法

指导学生思考出:

(1)195÷5×8=312(元),先求每份报纸的单价,再求8份报纸的总价,就是李老师应付给邮局的钱。

(2)195÷(5÷8)=312(元),先求5份报纸是8份报纸的几分之几,即195元占李老师所付钱的几分之几,最后求出李老师所付的钱。

(3)195×(8÷5)=312(元),先求出8份报纸是5份报纸的几倍,再把195元扩大相同的'倍数后,结果就是李老师所付的钱。

3.尝试用正比例知识解答

如果有学生想出用正比例方法解答,教师可以直接问:"你为什么要这样解?"让学生说出解题理由后再归纳其方法;如果学生没想到用正比例知识解答,教师可作如下引导。

教师:除了这些解题方法外,我们还会用正比例方法解答吗?请同学们用学过的有关正比例的知识思考:

(1)题中有哪两种相关联的量?

(2)题中什么量是不变的?一定的?

(3)题中这两种相关联的量是什么关系?

引导学生分析出:题中有所订报纸份数和所付总钱数这两个相关联的量,它们的关系是所付总钱数÷所订报纸份数=每份报纸单价,而题中的每份报纸单价一定,因此所付总钱数和所订报纸份数成正比例关系。

随学生的回答,教师可同步板书:

教师:运用我们前面所学的正比例知识,同学们会解答吗?准备怎样列比例式?

引导学生讨论后回答,先要把李老师应付的钱数设为x元,再根据所付总钱数所订份数=每份报纸单价的关系式,列式为1955=x8。

教师:同学们会计算吗?把这个比例式计算出来。

学生解答。

教师:解答得对不对呢?你准备怎样验算?

学生讨论验算方法,教师引导:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。

三、课堂活动

1.出示教科书第49页的例1图和补充条件

竹竿长(m)26…

影子长(m)39…

教师:在这个表中有哪两种量?它们相关联吗?它们成什么关系?你是根据什么判断的?

教师出示问题:小明和小刚测量出旗杆影子长21m,请问旗杆有多高呢?根据刚才我们判断的比例关系,你能列出等式吗?

学生独立思考解答,讨论交流。

2.小结方法

教师:你觉得我们在用正比例知识解决上面两个问题的时候,步骤是怎样的?(初步归纳,不求学生强记,只求理解。)

(1)设所求问题为x。

(2)判断题中的两个相关联的量是否成正比例关系。

(3)列出比例式。

(4)解比例,验算,写答语。

四、练习应用

完成练习十二的5,6,7题。

五、课堂小结

这节课我们学习了什么知识?你有什么收获?

六年级正比例教案篇6

赵喜梅老师执教的是北师大版六年级下册《正比例》第19页——21页的内容。赵老师教学思路清晰,课堂上,让学生自己观察,自己比较分析,自己归纳,来发现正比例量的特征,并常试抽象概括正比例的意义,提高学生分析,判断、概括、推理能力。突破了难点,基本上达到了教学目标。下面,谈一下我对这节

课的个人看法:

一、注重数学和生活的联系,课堂灵活开放。

老师从生活中的例子“买了一些苹果,已经吃了一部分,你想知道什么?”入手,引出数学的关联的量上,然后让学生从生活中找出相关联的量,让学生明白数学和生活密切相关。从“人的体重与门的高度”还有“我们班的总人数,满意的人数和不满意的人数是否成正比例?为什么?”,无不体现了数学知识运用与生活的特点,课堂设计灵活开放,锻炼了学生的分散思维。

二、如花微笑,温暖学生。

这节课上,赵老师从开始到结束,脸上都洋溢着迷人的微笑。微笑让学生感到温暖,身心放松,创造了和谐的教学课堂。我想在课堂微笑很容易做到,但难的是微笑一节课,不管是引导学生发言,讲授新知识,还是针对练习我想赵老师是达到了教学思想的很高境界。

三、用问题引领学生,突出学生的主体地位。

“如果已知正方形的边长,你能想到什么?”“你能用具体的数字说明它们之间的关系吗?”“请同学们挑选其中的一个表格认真观察,说说你发现了什么?”“如果把5个表格进行分类,你该怎么办?”每到关键的部分,老师并不着急告诉学生答案,而是用思考性的问题引着学生积极思考,最后由学生自己一点一点总结出来,让学生深刻理解知识点,从而达到突破重难点的目的。

六年级正比例教案篇7

教学目标:

1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

教学重难点:

正比例的意义以及判断两种相关联的量是不是成正比例。

教学准备:

教学光盘

过程

一、导入新课

1、谈话:老师准备去水果超市买一些苹果,已知苹果每千克的单价是6元,如果我准备买1千克,你能求出什么?(总价)

2、出示表格

已知苹果每千克的单价是6元

根据学生的回答将表格填写完整。

提问:如果买( )千克,总价( )元 ……;

观察表格,你们发现了什么?(当学生回答:买的千克数越多,总价就越高)

师小结:像这样一种量变化,另一种量也随着变化,我们就把这两种量叫做相关联的量[板书:两种相关联的量]

在这里——“买的千克数”和“总价”就是两种相关联的量。

二、探索新知

(一)体会两种相关联的量

1、出示例1表格

2、提问:这张表格中的两个量是否相关联?

学生发现:时间变化,路程也随着变化,路程和时间是两种相关联的量。(补充板书)

(二)探索两个变量之间的关系

1、谈话:请同学们进一步观察表中的数据,找一找这两种量的变化有什么规律?

启发学生从“变化”中去寻找“不变”。

学生可能会从不同的角度去寻找规律。

2、教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。

如果学生发现不了上述规律,可引导学生写出几组相对应的'路程与时间的比,并求出比值。

3、根据上面发现的规律,进一步启发学生思考:这个比值表示什么?上面的规律能不能用一个式子来表示?

路程

根据学生的回答,教师板书关系式:时间 = 速度(一定)

4、教师对两种量之间的关系作具体说明:当路程和对应时间的比的比值总是一定,也就是速度一定时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

(板书:路程和时间成正比例)

反问:在什么条件下行驶的路程和时间呈正比例?

三、教学“试一试”

1、要求学生根据表中的已知条件先把表格填写完整。

2、根据表中的数据,依次讨论表格下面的四个问题,并仿照例1作适当的板书。

3、让学生根据板书完整地说一说铅笔的总价和数量成什么关系。

四、抽象表达正比例的意义

1、引导学生观察上面的两个例子,说说它们有什么共同点。

2、启发学生思考:如果用字母x和分别表示两种相关联的量,用 表示它们的比值,正比例关系可以用怎样的式子来表示?

根据学生的回答,板书关系式/x=(一定)

五、巩固练习

1、完成第63页的“练一练”。

先让学生独立思考并作出判断,再要求说明判断理由。你是怎样判断的?

2、做练习十三第1~3题。

第1题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。

第2题先让学生独立进行判断,再指名说判断的理由。

第3题要先让学生说说题目要求我们把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再让学生在图上画一画。

填好表格后,组织学生讨论,明确:只有当两种相关联的量的比值一定时,它们才能成正比例。

六、全课小结

通过这节课的学习,你有哪些收获?

七、课堂作业:

完成补充习题的相关练习

补充练习:

1、判断下面每题中的两种量是不是成正比例,并说明理由。

①每小时织布米数一定,织布总米数和时间。

②每人树植棵数一定,参加植树人数和植树总棵数。

③订阅《中国少年报》的份数和钱数。

④小新跳高的高度和他的身高。

⑤长方形的宽一定,它的面积和长。

2、选择。

a和b相关联的两种量,下面哪个式子表示a和b成正比例?

①a+b=12 ② =5 ③ab= ④a-b=3.8 ⑤b=7a

3、x、、z是三种相关联的量,已知x×=z。

当( )一定时,( )和( )成正比例。

六年级正比例教案7篇相关文章:

拔河比赛六年级作文最新7篇

六年级活动总结优秀7篇

拔河比赛六年级作文300字7篇

《乐》作文六年级400字7篇

一至六年级作文推荐7篇

六年级下语文作文推荐7篇

礼物作文小学六年级作文7篇

六年级300字作文精选7篇

六年级300字作文参考7篇

小学六年级语文学期工作总结7篇

六年级正比例教案7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
61218